
DATA VIS +
P5JS +

WEATHER

GRANT PEDERSEN & MASHA NIKISHINA

Mediarts 206

WEATHER LINES

How do we visualize
what is around us?

By fusing art with real-time data, data offers an ever-changing
reflection of our natural environment. For example, how can we
create a piece that fluidly adapts to wind speed and temperature
variations, transforming the data constantly around us into an
artwork that is constantly updating and reflecting the world.

This was the inspiration behind “Weather Lines.”
Our artwork attempted to incorporate
OpenWeather’s data API with noise particle
functions to create a piece that mimics air itself.

We have two motivations behind this project.
Firstly, in an era overloaded with information,
there's a profound need for representations that
simplify without undermining. Raw weather data,
while crucial, can be mundane and inaccessible to
many. Translating this data into a visual form can
amplify its reach and impact. Secondly, the
project underscores the potential of generative
art in the realm of data representation. By
automating artistic decisions based on data, we
can craft visualizations that are both objective in
their foundation and subjective in their
interpretation.

WEATHER LINES 2

Concept Statement
In the age of data visualization, art and science
converge to create interactive experiences that
engage, inform, and inspire. Weather Lines, set
against the backdrop of environmental
awareness, seeks to bridge meteorological data
with visual aesthetics. By leveraging real-time
weather data from any city, we have created a
dynamic sketch that provides not just a
quantitative understanding of the city's climate
but also an intuitive, visual grasp of its ambiance.
Using temperature and wind speed as primary
inputs, the sketch translates these into a
choreography of moving particles on a canvas,
where each particle's motion and color embody
the nuances of the weather.

Our Main Question

Can real-time weather data, when transformed
into a visual medium using generative art
principles, provide a more engaging and intuitive
understanding of a city's climate, compared to
traditional data presentation methods?

Generative Steps
& Math

Particle Initialization: Begin with 3000
particles, each initialized at a random position
on the canvas, with a random direction of
motion.
Temperature Mapping: Map the real-time
temperature of a city to a color gradient
between blue (cold) and red (warm).
Wind Speed Mapping: Adjust the speed of the
particles based on real-time wind speed data.
Faster wind results in quicker particle
movement.
Noise-Driven Movement: Utilize Perlin noise
to dictate the direction of particle movement,
ensuring fluidity and unpredictability.
Canvas Interaction: Should a particle drift
beyond the canvas's boundaries, reinitialize
its position to a random location within the
canvas.

1.

2.

3.

4.

5.

These equations form the mathematical
backbone of the project, translating raw weather
data into a visually engaging experience. They link
temperature to the vibrancy of particle
movement, wind speed to particle speed, and
numerical temperature values to an intuitive color
spectrum. This mathematical transformation
merges data with aesthetics, enhancing our
understanding of climate through art and creating
a dynamic, informative visualization.

Math

Particle Initialization

Temperature Mapping

Wind Speed Mapping

Noise-Driven Movement

Canvas Interaction

Generative Steps#

1.

2.

3.

4.

5.

WEATHER LINES 3

Math continues next page.

Noise Strength

-10 0 10 20 30 40

2

1.5

1

0.5

0

Particle Speed

0 2 4 6 8 10 12 14

5

4

3

2

1

0

(, ,)

Math cont.
Temperature-based Noise Strength: The code
maps the temperature (in Celsius) to a
noiseStrength value between 0.5 and 2.
Equation:

Graph:

WEATHER LINES 4

noiseStrength = map(temp, -10, 40, 0.5, 2)

Temperature in Celsius

N
oi

se
 S

tr
en

gt
h

Wind Speed-based Particle Speed: The code
maps wind speed to the particle's speed value
between 2 and 5.
Equation:

Graph:

particleSpeed = map(windSpeed, 0, 15, 2, 5)

Wind Speed (m/s)

Pa
rt

ic
le

 S
pe

ed
Temperature-based Color Interpolation: The color
of the particles changes between cold (blue) and
warm (red) based on the current temperature.
Equation:

Representation:
currentColor=lerpColor(coldColor,warmColor,map(temp,−10,40,0,1))

-10 to 40 Celsius

Particle Movement using Noise: The particles
move based on the Perlin noise function, which
gives them a natural, fluid-like movement.
Equation:

angle = noise(x) * 2 * noiseStrength

Where x =

loc.x loc.y frameCount

noiseScalenoiseScalenoiseScale

What does the math show?

Illustrates how weather data, specifically
temperature and wind speed, can be
transformed into visual elements that
convey meaningful information to viewers

Customers who make large purchases
 and are loyal to the brand

WEATHER LINES 5

Code
Explained

Variables & Arrays

let weatherData;
let num = 3000;
var particles_a = [];
var particles_b = [];
var particles_c = [];
var fade = 100;
var radius = 3;

let noiseScale = 300;
let noiseStrength = 1.2;

weatherData: A variable to store the fetched weather data.
num: The number of particles (set to 3000).
particles a, particles b, particles_c: Arrays to store instances of Particle objects.
fade: The alpha value (transparency) of particles.
radius: The size of particles.
noiseScale and noiseStrength: Values to tweak the movement of particles.

Customers who make large purchases
 and are loyal to the brand

function setup() {
 createCanvas(1200, 900);
 let city="Moscow"; //replace with other city name we used moscow to generate this
pages background :)
 let apiKey = "e47850946987f851a3be5ddac57f8839";
 let url = `https://api.openweathermap.org/data/2.5/weather?q=${city}&appid=${apiKey}`;

 loadJSON(url, gotWeatherData,handleError);
 noStroke();
 for (let i=0; i<num; i++) {

 let loc_a = createVector(random(width*1.2), random(height), 2);
 let angle_a = random(TWO_PI);
 let dir_a = createVector(cos(angle_a), sin(angle_a));
 let loc_b = createVector(random(width*1.2), random(height), 2);
 let angle_b = random(TWO_PI);
 let dir_b = createVector(cos(angle_b), sin(angle_b));
 let loc_c = createVector(random(width*1.2), random(height), 2);
 let angle_c = random(TWO_PI);
 let dir_c = createVector(cos(angle_c), sin(angle_c));

 particles_a[i] = new Particle(loc_a, dir_a, 2);
 particles_b[i] = new Particle(loc_b, dir_b, 2);
 particles_c[i] = new Particle(loc_c, dir_c, 3);

 }
}

WEATHER LINES 6

Code
Explained cont.

Setup()

The canvas of size 1200x900 pixels is created.
A URL is formed to fetch weather data for a city using an API key.
The loadJSON function fetches the weather data using the formed URL and
passes it to gotWeatherData on success or handleError on error.
A loop creates 3000 Particle objects for each particle array (particles_a,
particles_b, particles_c). These particles have random positions and directions.

WEATHER LINES 7

Code
Explained cont.

gotWeatherData() & handleError()

function gotWeatherData(data) {
 weatherData = data;
}
function handleError(err) {
 console.error("There was an error
fetching the weather data:", err);
}

gotWeatherData stores the fetched weather data in the weatherData variable.
handleError logs any errors during the data fetch.

Customers who make large purchases
 and are loyal to the brand

WEATHER LINES 8

Code
Explained cont.

draw()
function draw() {
 if (weatherData) {
 let temp = weatherData.main.temp - 273.15;
 noiseStrength = map(temp, -10, 40, 0.5, 2);
 let windSpeed = weatherData.wind.speed;
 for (let i = 0; i < num; i++) {
 particles_a[i].speed = map(windSpeed, 0, 15, 2, 5);
 }
 let coldColor = color(0, 0, 255);
 let warmColor = color(255, 0, 0);
 let currentColor = lerpColor(coldColor, warmColor, map(temp, -10, 40, 0, 1));
 fill(0, 5);
 noStroke();
 rect(0, 0, width, height);
 for (let i = 0; i < num; i++) {
 fill(currentColor.levels[0], currentColor.levels[1], currentColor.levels[2], fade);
 particles_a[i].move();
 particles_a[i].update(radius);
 particles_a[i].checkEdges();
 particles_b[i].move();
 particles_b[i].update(radius);
 particles_b[i].checkEdges();
 particles_c[i].move();
 particles_c[i].update(radius);
 particles_c[i].checkEdges();
 }
 }
}

Continuously updates the canvas.
If weatherData exists:

Temperature is converted from Kelvin to Celsius.
noiseStrength is adjusted based on temperature.
Particle speed (particles_a) is adjusted based on wind speed.
Color is determined by temperature: cold temperatures give a bluish color, and warm
temperatures give a reddish color. Intermediate temperatures will result in a mix.
A black rectangle with slight opacity is drawn to create a fading effect.
All particles are moved, checked against canvas edges, and then drawn on the canvas.

Customers who make large purchases
 and are loyal to the brand

WEATHER LINES 9

Code
Explained cont.

draw()
 let Particle = function(loc_, dir_, speed_) {
 this.loc = loc_;
 this.dir = dir_;
 this.speed = speed_;
 this.d = 1;
 };
 Particle.prototype.run = function() {
 this.move();
 this.checkEdges();
 this.update();
 };
Particle.prototype.move = function(){
 this.angle=noise(this.loc.x/noiseScale, this.loc.y/noiseScale,
frameCount/noiseScale)*TWO_PI*noiseStrength;
 this.dir.x = cos(this.angle)+sin(this.angle)-sin(this.angle);
 this.dir.y = sin(this.angle)-cos(this.angle)*sin(this.angle);
 this.vel = this.dir.copy();
 this.vel.mult(this.speed*this.d);
 this.loc.add(this.vel);
 };
 Particle.prototype.checkEdges = function(){
 if (this.loc.x < 0 || this.loc.x > width || this.loc.y < 0 || this.loc.y > height) {
 this.loc.x = random(width*1.2);
 this.loc.y = random(height);
 }
 };
 Particle.prototype.update = function(r){
 ellipse(this.loc.x, this.loc.y, r);
 };

Defined using a function constructor and prototypes.
Represents a moving particle with properties such as location, direction, and speed.

run(): Calls move(), checkEdges(), and update().
move(): Adjusts the particle's direction based on noise and updates its position.
checkEdges(): Resets the particle's position if it goes beyond the canvas edges.
update(): Draws the particle as an ellipse on the canvas.

Results & Conclusion
Combining data and art provides a fresh way to
understand information. In this project, we visualize city’s
changing weather with moving particles, colored by
temperature and driven by wind. This approach
simplifies data and shows the natural beauty in weather
patterns. As we focus more on climate change and the
environment, projects like this one help people connect
with data and see it as a reflection of our world.

WEATHER LINES 10

Atlanta, USAMoscow, Russia

